

Congruence module. Reference: "languence modules in higher codimension and seta lines in Galor's cohomology " "Longnuence modules and the willes - Lens tra- Diamond mumerical Criterion in higher codimension ! § Notation. 19: complete discrete valuation ring D: Uniformizer A: complete local 9-algebra M: J.g. A module $\Lambda: A \rightarrow 0$ map of 9 algebra.Pr= kerr C:= height Pr = din Apr. E' (M) := Extr' (O, M) th ILUM) = loker (Ext_A (0, m) to -> Ext_A (0, M/RM)) congruence module. Elig. 9-mature. $\Phi_{\Lambda}(A) := \operatorname{tors}(P_{\Lambda}/P_{A}^{2})$ torsion part of cotangent module. Thm: TFAE The local ring AB is regular D The rank of the O-malkle Par is C= height P. Ð

The 9-module $\underline{\Psi}_{\lambda}(A)$ is torsion B The 9-module Er(M) is torsion for each J.g. A module M Ð

When the condition holds, the O-make In(A) is cyclic. C_{0} : the category whose objects are pairs (A, λ) satisfying above equivalent condition $C_{0}(C)$: Subcategory of C_{0} consists of pairs (A, λ) s.t. $ht(P_{\lambda}) = C$. Lemma. For any $(A, \lambda) \in C_{\mathcal{G}}(C)$ and f.g. A-matule M. $F_{\Lambda}^{c}(\mathbf{M}) \longrightarrow F_{\Lambda}^{c}(M_{pM})$ is injective $Ext_{A}^{c}(0, M)$ ^{tf} $Ext_{A}^{c}(0, M)$ Thm. For $(A\lambda) \in C_0(c)$, the local ring A is regular if and only if. $\overline{E}_{\lambda}(A) = 0$ if and only if $\overline{E}_{\lambda}(A) = 0$ § structure of $F_A^*(9)$ The Ext-algebra $\operatorname{Ext}_{A}^{*}(0,0)$ as graded 0-algebra. can be highly non-commutative and infinite. However, its torsion free quotient $F_{x}^{*}(9)$ has simple structure., which is an exterior algebra generated by its degree one components. $F_{\lambda}(9) \cong Hom_{\theta}(\frac{P_{\lambda}}{2}, 9)$ $F_{\lambda}^{c}(\Theta) = \Lambda^{c} \operatorname{Hom}_{\Theta}(\operatorname{Pa/p}_{\lambda}^{2}, \Theta).$ Lemma; $F_{A}(0) = E_{X}t_{A}(0, 0) - Hom_{9}(\frac{P_{A}/2}{P_{A}}, 0)$

Proof. We have $0 \rightarrow R \rightarrow A \rightarrow 0 \rightarrow 0$ Applying Hom (-, M) $Hom_{A}(A,M) \longrightarrow Hom_{A}(B,M) \longrightarrow Ext'(O,M) \longrightarrow Ext'(A,M)$ $Hom_{A}(A,M) \longrightarrow Hom_{A}(B,M) \longrightarrow Ext'(O,M) \longrightarrow Ext'(A,M)$ $Ext_{A}(0,M) = (oker(M \rightarrow Hom_{A}(P_{A},M)))$ Take M = O $Hom_A(A, O) \longrightarrow Hom_A(P_A, O)$ is zero map (9 $Ext_{A}'(0,0) = Hom_{A}(P_{\lambda},0) = Hom_{B}(\frac{P_{\lambda}}{P_{A}},0)$ which is already toosign free. S Freeness criterion. For any A-module X, we have kinneth map. $Ext_{A}(0, X) \otimes (M_{BM}) \cong Ext_{A}^{c}(0, X) \otimes M \longrightarrow Ext_{A}^{c}(0, X) \otimes M$ This is functorial in X Take X = A and 19 and torsion free quotient.

 $Ext_{A}^{C}(O,A) \stackrel{t}{\to} \bigotimes (M_{RM}) \stackrel{t}{\to} \longrightarrow Ext_{A}^{C}(O,O) \stackrel{t}{\to} \bigotimes (M_{RM}) \stackrel{t}{\to} S$ $E_{Xt_{A}}^{c}(\mathcal{O}, M)^{t_{f}} \longrightarrow E_{Xt_{A}}^{c}(\mathcal{O}, M)^{t_{f}} \longrightarrow E_{Xt_{A}}^{c}(\mathcal{O}, M_{p_{A}}^{m})^{t_{f}}$ The drugram above induces a notural surjective map of 9-modules $a_{\lambda}(M): = \Psi_{\lambda}(A)^{n} \longrightarrow = \Psi_{\lambda}(M)$ N= Yon K(M) = Yan K_{Ap}(Mp) In particular, there is an equality length g Kr(M) = Whength Kr(A) - length g ker Gr(M). Thm: 2,19. With notation above. Further assume A Gorenstein and Mix maximal Cohen - Macaulay. length of Ex(M) = U. length of Ex(A) <=> M = A &W and Wpz=0 as A modules Def. Wiles defect Sim = rank, (M) · length of \$(A) - long th of \$(M) plug in above for mula. we have $S_{\lambda}(M) = \operatorname{van} K_{\lambda}(M) \cdot S_{\lambda}(A) + \operatorname{length}_{\Theta} \operatorname{ker}(\operatorname{an}(M))$

Which tells us. Sr(M) =0 for all M if and only if Sr(A)=0 The equality holds if and only if A is complete intersection. The when depth M = Ct1 and Mp +0, one has fr (M) =0 The equality holds if and only if. A is complete intersection and $M^{12} \xrightarrow{} A^{11} \xrightarrow{} W$ and $W_{B} = 0$